Es ist Pandemie und wir nutzen eine der schärfsten Waffen nicht - Digitalisierung. Warum nicht? (Datenlage Schule nein, Kontaktverfolgung nein, Impftermine nein, Homeoffice nunja, Einzelhandel/Kultur/Kneipe nein...) verdammt wir könnten damit soviel bewegen?!
Wir sollten die Pandemie als „Disruption“ sehen und damit verstehen, welche Chance hier liegt uns nachhaltig als Gesellschaft zu verändern. Es betrifft Alle, es wird kein „zurück zum Alten“ geben.
Unser Ansatz: MINT-Aufklärung und digitale Tools nutzen - Selbstbau einer CO2-Ampel!
Ein CO2-Messgerät gehört in jeden Klassenraum und in jeden Hörsaal, entweder käuflich erworben, oder noch besser, gleich selbst gebaut. Denn beim Selbstbau lernen wir viel über Physik, Biologie, Chemie, sowie Informatik und können sogar weitere Features integrieren, die kaum ein Standardgerät bietet. Eine Expertengruppe der Swiss National COVID-19 Science Task Force hat die Potentiale der CO2-Messung aus wissenschaftlicher Sicht zusammengefasst. Die IoT2-Werkstatt ermutigt das Bildungssystem, sich selbst zu helfen. Wir unterstützen euch hier mit Bauanleitung und wissenschaftlichen Informationen. Weitere Tipps und Nachbauprojekte im ganzen Bundesgebiet findet ihr im Twitter von Guido Burger.
Aktuelle Mutationen lassen eine höhere Ansteckungsgefahr und impfresistente Virenstämme befürchten, auch Kinder und Jugendliche beeinflussen das Infektionsgeschehen. Beides keine guten Nachrichten für die Gesellschaft und fürs Bildungssystem. Fest steht: Aerosole spielen eine große Rolle bei der Übertragung in Innenräumen. Aerosole können wir nicht messen, wohl aber CO2 als Surrogatmarker. Zu wenig lüften erhöht das Erkrankungsrisiko, zu viel lüften schadet der Umwelt. Das Video des ScienceLabs der TH Rosenheim fasst die wissenschaftlichen Hintergründe sehr anschaulich zusammen. Mit diesem Mitmachprojekt zur bedarfsorientierten Lüftung möchten wir die Initiative ergreifen, um die Virusausbreitung zu reduzieren und zugleich den Klimaschutz zu würdigen.
Auch nach der Pandemie hilft uns zielgerichtetes Lüften dabei, schleichende Ermüdungsprozesse im Unterricht zu stoppen. Denn hohe CO2-Werte reduzieren auch die Aufmerksamkeit und das Lernverhalten der Schülerinnen und Schüler. Hier konkrete Ergebnisse aus verschiedenen Studien:
Können wir uns das leisten?
Nutzt die IoT2-Werkstatt, informiert euch über die Hintergründe (Linkliste), entwickelt eigene Ideen, baut selbst. Nicht nur in Zeiten der Pandemie sind diese Skills von herausragender Bedeutung (KI, SmartCity, Spektrometer, Pegelmessung Starkregen, Feinstaub und vieles mehr) . Aber Schritt für Schritt:
Woher stammt das in Innenräumen befindliche Kohlendioxid?
Richtig, es stammt aus der Ausatemluft der Personen, die sich in den Innenräumen aufhalten. Jeder Mensch atmet pro Minute etwa 8-10 Liter Luft aus, die dort im intensiven Kontakt mit dem Lungengewebe gestanden hat. Die ausgeatmete Luft enthält deshalb neben CO2 (4 % = 40.000 ppm) auch winzige Flüssigkeitströpfchen (Aerosole), die aufgrund ihrer Größe für längere Zeit in der Luft schweben können. Ist die jeweilige Person mit dem Virus infiziert, so enthalten diese Tröpfchen auch Viruspartikel. Bei Aerosol-Sinkgeschwindigkeiten von wenigen Metern pro Stunde (Quelle) und Abnahme der biologischen Virus-Infektionsaktivität mit einer Halbwertszeit von ca. 2.7 Stunden (Quelle) bleibt die Raumluft längere Zeit belastet. Atmet ein gesunder Mensch diese kontaminierten Tröpfchen ein und überschreitet die darin enthaltende Anzahl an Viruspartikel eine minimale Infektionsdosis, so wird die Krankheit übertragen. Über 200 Wissenschafterinnen und Wissenschaftler appellierten kürzlich an die WHO, luftgebundenen Übertragungswege bei SARS-CoV-2 ernster zu nehmen (Morawska & Milton, 2020). Die CO2-Messung bietet eine kostengünstige Lösung zur Einordnung des aktuellen Risikos durch potentiell infektiöse Aerosole.
Befinden wir uns mit mehrerern Personen in einem Raum, so liefert die Messung der CO2-Konzentration ein Maß dafür, wieviel Prozent der von uns eingeatmeten Luft aus bereits ausgeatmeter Luft anderer Menschen besteht. Die Massenbilanz zeigt, dass eine gemessene CO2-Konzentration von ca. 1200 ppm (parts per million) bedeutet, dass fast 2% der Luft im Raum bereits mindestens einmal Lungenkontakt hatte [Rudnick&Milton, 2003]. Anschaulich kann man feststellen, dass jeder 50.te Atemzug den eine Person in diesem Raum tätigt, aus schon einmal ausgeatmeter Luft besteht. Über das sich daraus ergebene konkrete Corona-Infektionsrisiko wollen wir nicht spekulieren, es hängt von verschiedenen Faktoren ab, die zur Zeit noch intensiv erforscht werden Das MPI Chemie in Mainz bietet hierzu einen interaktiven Risk-Calculator. Ein Risikofaktor ist sicher die Anzahl von weiteren Personen im selben Raum, das lokale Pandemiegeschehen und die Strömung der Luft. Dem Problem, wie viele Personen sich überhaupt im Raum befinden, werden wir am Ende dieser Anleitung messtechnisch nachgehen (WiFi-Pax-Counter). Insgesamt gilt natürlich: Ist keine der im Raum befindlichen Personen infiziert, so besteht auch bei hohen Konzentrationen kein Infektionsrisiko.
Die Architektur-Studierenden der Hochschule Trier Luisa Herzog, Lukas Kunze, Luca Ligotti und Malte Terboven überzeugen mit ihrem Entwurf „BUILDING BRIDGES“ die namhafte internationale Jury – u.a. Patrick Schumacher, Corporate Director bei Zaha Hadid Architects und Anne Cecilie Haug, leitende Architektin und Mitglied des Forschungs- und Innovationsteams bei Snøhetta - bei der sechsten Ausgabe des jährlichen Architekturwettbewerbs „Microhome“ und gewinnen sowohl den 1. Preis als auch den Student Award. Der Wettbewerb richtet sich an Studierende und an professionelle Architekturbüros, der 2. Preis ging an ein Büro aus Singapur.
Die Arbeit schlägt eine Lösung temporärer Herbergen für Geflüchtete vor, die entlang der globalen Flüchtlingsrouten positioniert werden – was durchaus als politisches Statement verstanden werden kann. Die Herausforderungen der Aufgabe wie die Anpassung an unterschiedlichste Bauplätze, die Kreislauffähigkeit der größtenteils aus Abfällen generierten Baustoffe, die Demontierbarkeit der Konstruktion, die einfache Transportmöglichkeit der Module, die autarke Versorgung mit Wasser und Energie löst der Entwurf fast beiläufig. https://architecturecompetitions.com/microhome6/
Flüchtlingsrouten existieren überall auf der Welt, da viele Menschen gezwungen sind, aus ihrer Heimat zu fliehen aufgrund von Krieg, Verfolgung, Hunger und Armut sowie den Auswirkungen des Klimawandels. Die Abfallentsorgungsrouten haben den gleichen Verlauf wie die Flüchtlingsrouten, aber in entgegengesetzter Richtung. So entstehen Zonen, in denen sich mit den Ressourcen vor Ort die Chance bietet, Lebensräume für Flüchtlinge zu schaffen.
Brücken werden durch die Kombination mehrerer einzelner Microhomes geschaffen. Der gemeinsame Bau von Lebensräumen überwindet nicht nur topografische Hindernisse, sondern schafft auch einen sozialen Zusammenhalt, in der Flüchtlinge Trost, gegenseitige Hilfe und die Möglichkeit finden, ihr Leben mit neuem Sinn für Ziele und kollektiver Stärke aufzubauen. All dies verringert die ständige Angst, indem ein sicherer Ort während der Reise geboten wird. Topografien und Klimazonen sind überall unterschiedlich und bringen andere Herausforderungen mit sich. Nur die Brücke als architektonisches Wunderwerk, das eine nahtlose Verbindung zwischen den verschiedenen Landschaften ermöglicht, kann diesen Herausforderungen standhalten. Mit ihrer Fähigkeit, Flüsse, Täler und sogar tiefe Schluchten zu überspannen, können sie nicht nur einen sicheren Zufluchtsort bieten, sondern auch eine einfache Überquerung auf der gefährlichen Reise ermöglichen.
Die Wiederverwendung von Materialien, bei der Ressourcen durch Wieder- oder Weiterverwendung so lange wie möglich im Kreislauf gehalten werden, birgt ein großes Potenzial zur Bekämpfung des Klimawandels und zur Schaffung einer nachhaltigeren Zukunft. Bestehende Abfälle aus Industrieländern werden weltweit in Schwellenländer transportiert und dort deponiert. Entsprechend dem Konzept des Urban Mining, das die Rückgewinnung wertvoller Ressourcen und Materialien aus bestehenden städtischen Strukturen beschreibt, werden Materialien und Abfälle recycelt. Ein Beispiel für das Recycling von Materialien/Abfällen ist die Korkdämmplatte, die aus dem Abfallprodukt von Weinkorken hergestellt wird, sowie das Tuff-roof aus Tetra Pak. So werden neue Bauprodukte aus Abfallprodukten hergestellt, die sonst als Müll auf der Deponie landen würden.
Modulare Systeme aus kleinen geschlossenen Einheiten, welche in ein Raster von 1,20m x 1,20m unterteilt sind, bilden zusammen komplexe Strukturen aus, die dennoch leicht montiert, demontiert oder ausgetauscht werden können. Dies hat den Vorteil, dass der Prozess effizienter, der Transport einfacher und die Bauzeit kürzer wird, was zu einer wirtschaftlicheren und leichteren Möglichkeit für lokale NGOs führt, Flüchtlingen an verschiedenen Orten zu helfen. Eine LKW-Ladung enthält alle Module und Materialien, für ein Microhome.
Ein autarkes Leben wird durch eine selbstständige Strom- sowie Wasserversorgung ermöglicht, indem die Solarzellen auf dem Dach den Strom generieren und die Nebelfänger sowohl die Feuchtigkeit aus dem Nebel filtern als auch das Regenwasser vom Dach in den Wassertank führen. Eine Nutrient Harvester Toilette wandelt Abwasser in nährstoffreichen Dünger um, welcher für die Gartenarbeit und den Anbau von Lebensmitteln verwendet werden kann.
Feedback der Jury:
„Building Bridges is a MICROHOME planned for construction along a refugee migration route. ‘Bridges’ of connected cabins are created over time as multiple homes are built adjacent to one another. The project is aspirational in its ambition to function as a means for community building, in a space that is environmentally harsh, culturally mixed and transient. The proposed construction is a modular system of recycled materials fully transportable in a single truck.”
Francesca Perani / Buildner guest jury
FOUNDER OF FRANCESCA PERANI ENTERPRISEITALY
“The design encompasses not only a multi-module self-sufficiency system tailored to assist vulnerable residents in need of evacuation routes but also establishes an architectural framework where mutual assistance plays a pivotal role in rebuilding new lives.”
Anne Cecilie Haug / Buildner guest jury
SENIOR ARCHITECT, SNØHETTA NORWAY
“The project shows flexibility when it comes to site adaption and the number of units, and it represents a solution to a very difficult task. The use of waste materials to build it could also solve other challenges. The focus on safe outdoor spaces and compact living, vivid renderings and explanatory graphics stood out.”
Die internationale Jury bei Buildner setzte sich aus folgenden Personen zusammen:
Sevince Bayrak, Architekt, Schriftsteller und Mitbegründer von SO?; Sarah Broadstock, Architektin im Londoner Studio Bark; Anne Cecilie Haug, Leiterin der Personalabteilung, leitende Architektin und Mitglied des Forschungs- und Innovationsteams bei Snøhetta; Gavin Hale-Brown, Leiter des Londoner Büros Henley Hale-Brown; Norihisa Kawashima, Gründer und Leiter von Nori Architects in Japan; Francesca Perani, Gründerin von Francesca Perani Enterprise in Bergamo, Italien, und Mitbegründerin des Aktivistenprojekts RebelArchitette; Todd Saunders, Gründer von Saunders Architecture in Bergen, Norwegen; Patrik Schumacher, Corporate Director bei Zaha Hadid Architects; und Lei Zheng, Associate bei Zaha Hadid Architects.
MICROHOME ist die sechste Ausgabe eines jährlichen Architekturwettbewerbs, der im Rahmen der Buildner’s Small-Scale Architecture series und in Zusammenarbeit mit den ARCHHIVE BOOKS publications ins Leben gerufen wurde. Da sich die Krise des erschwinglichen Wohnraums auf Städte in der ganzen Welt ausweitet und die natürlichen Ressourcen angesichts von Klima- und Wirtschaftskrisen schwinden, sucht der Wettbewerb nach zukunftsfähigen Ideen für ein Leben auf kleinem Raum, das besser zu unserer sich verändernden Welt passt. Die Wettbewerbsreihe MICROHOME fordert die Teilnehmer auf, Entwürfe für eine netzunabhängige, modulare Struktur einzureichen, die ein hypothetisches junges Berufspaar beherbergen kann. Die einzige Vorgabe für das Projekt ist, dass die Gesamtgrundfläche 25 Quadratmeter nicht überschreiten darf. Die Teilnehmer werden ermutigt, die räumliche Organisation neu zu überdenken und eine einzigartige Ästhetik, neue Technologien und innovative Materialien einzubeziehen. Die Projekte können an jedem Ort, in jeder Größe und überall auf der Welt realisiert werden.
Wie der Infektionsgefahr vorbeugen?
Aus den Vorüberlegungen wird aber klar, dass eine gute Durchlüftung der Räume das Risiko senkt. Mehr dazu im Video von Prof. Aschaber und Prof. Krause vom ScienceLab der TH Rosenheim. Gute Durchlüftung sollte bei Versammlung einer größeren Gruppe damit eigentlich eine Selbstverständlichkeit sein. Das Umweltbundesamt hat hierzu allgemeine Leitlinien zur "Gesundheitlichen Bewertung von Kohlendioxid in der Innenraumluft" und eine Sonderstellungnahme SARS-CoV-2 verfasst, an der wir uns im folgenden orientieren werden. Demnach ist eine Konzentration von bis zu 1000 ppm hygienisch unbedenklich. Eine Konzentration zwischen 1000 und 2000 ppm stuft die Leitlinie als bedenklich und alles darüber als inakzeptabel ein. CO2 ist auch ein wichtiger Indikator in der DGHK Stellungnahme zur Prävention in Schulen. Der UBA-Arbeitskreis Lüftung empfiehlt dazu den Einsatz von CO2-Ampeln. Die DGVU (Unfallkasse) geht noch weiter und plädiert in Zeiten der Epidemie für einen Zielwert von < 1000 ppm in Klassenräumen. Die neusten Erkenntnisse fasst der für die KMK erstellte UBA Ratgeber "Lüften in Schulen" (15.10.20) zusammen.
Lüften bedeutet nicht nur Luftaustausch, sondern im Winter auch Wärmeverluste. Eine nachhaltige Strategie sollte auch diesen Effekt berücksichtigen. Ist, wie in den meisten Schulen, keine moderne Klimatechnik mit Wärmetauscher vorhanden, so hilft nur Überwachung des CO2 und bedarfsorientiertes bzw. regelmäßiges manuelles Querlüften.
Bitte beachten Sie: Sobald Sie sich das Video ansehen, werden Informationen darüber an Youtube/Google übermittelt. Weitere Informationen dazu finden Sie unter Google Privacy.
An dieser Stelle möchten wir auch auf einen Zusammenhang zwischen Luftfeuchtigkeit und möglichen Infektionsrisiko hinweisen:
Ein Forscherteam des Leibniz-Instituts für Troposphärenforschung empfiehlt deshalb eine realtive Luftfeuchtigkeit von 40-60 % in Innenräumen. Die meisten CO2-Ampeln zeigen auch die realtive Feuchtigkeit der Raumluft an. Durch häufiges Lüften im Winter wird diese eher zu niedrig ausfallen. Eine Erhöhung lässt sich z.B. durch viele Zimmerpflanzen auf dem Fensterbrett oder einer Schale Wasser auf dem Heizkörper erzielen.
Obige Betrachtungen gelten für alle Innenräume, in denen sich Menschen versammeln. Das besondere Augenmerk der IoT-Werkstatt gilt aber den Klassenräumen in unseren Schulen. Hier besteht dringender Handlungsbedarf, lassen sich klassische Lüftungsempfehlungen ("Alle x Minuten Querlüften") vielerorts aus baulichen Gründen nur schwer umsetzen. Empirische Untersuchungen (Unfallkasse NRW, Fraunhofer IBP, NLGA, nochmal Unfallkasse NRW) orientieren sich deshalb oft an den oberen Grenzwerten des UBA und versuchen die Situation über Lüftungstools (Unfallkasse NRW,Fraunhofer WKI) oder Apps zu modellieren.
Hier wäre eine Kontrolle des Lüftungserfolgs und ggf. individuelle Anpassung des Zeitintervalls / der Lüftungsdauer sinnvoll. Kipplüften ist quasi wirkungslos und führt nur zu einem erhöhten Heizungsbedarf der Schule. Kommt die kältere Jahreszeit, so geraten gut gemeinte Empfehlungen auch an psychologische Grenzen. Im Forschungsprojekt REGENA haben wir feststellen können: Keiner im Raum möchte unnötig frieren - intelligente Messung statt zeitliche Steuerung ist essentiell für eine Nutzerakzeptanz.
Wie können wir die Nutzerakzeptanz in der Schule erhöhen?
Kleine Interventionen, wie der obige Fensterhänger aus Niedersachsen, können tatsächlich die Aufmerksamkeit auf den Lüftungsprozess lenken. Noch besser aber wäre es, wenn die zugrundeliegenden Naturgesetze im Rahmen eines Selbstbauprojektes im Unterricht klar thematisiert würden. Lehrkräfte aus MINT (Mathematik, Naturwissenschaften, Informatik, Technik) können sich ebenso einbringen, wie Kolleginnen und Kollegen aus Kunst oder Ethik. Warum keine individuell gestaltete Ampel im Design der Schule?
Der Selbstbau einer CO2-Überwachungsampel fürs eigene Klassenzimmer bildet, fördert Kreativität und gibt allen Beteiligten das Gefühl, selbst etwas zur Risikovermeidung und zum Schutz der Gesellschaft beizutragen. In der Folge werden wir hier weitere Links zu den MINT-Hintergründen von COVID-19 einstellen. Wir freuen uns über jeden Hinweis zu geeigneten Quellen.
Richtiges Lüften schont die Umwelt, spart Heizkosten und mindert CO2-Emmissionen. In einem Einfamilienhaus lassen sich so 165 Euro pro Jahr sparen und 560 kg CO2 vermeiden.Die meiste Energie ist nämlich in den Wänden und im Inventar der Klasse gespeichert. Kipplüften führt dazu, dass sich auch die Wände abkühlen und später wieder aufgeheizt werden müssen. Beim Querlüften wird nur die Luft ausgetauscht, deren Energiegehalt aufgrund der niedrigen spez. Wärmekapazität deutlich geringer ist.
Im Folgenden wollen wir eine IoT-Anwendung bauen, um das Infektionsrisiko in Innenräumen zu quantifizieren und in Form einer Risiko-Ampel zu visualisieren. Zeigt die Ampel gelb oder rot, ist es Zeit, die Fenster zu öffnen, oder den Raum zu verlassen. (Natürlich setzen sich die Aerosole aufgrund der Schwerkraft irgendwann ab, ein nichtbelüfteter Raum mit "schlechter Luft von gestern" ist vielleicht harmlos, aber darauf wollen wir es natürlich nicht ankommen lassen).
Dazu benötigen wir einen Sensor für die CO2-Konzentration. Typisches Messverfahren für Kohlendioxid ist die Infrarot-Absorption. Hier gibt es viele verschiedene Modelle auf dem Markt, teilweise mit analogem Ausgang, so dass ein Anschluss an den Octopus einfach mit dem AnalogRead-Baustein erfolgen kann. Zur Anzeige bietet der Maker-Bedarf verschiedene Optionen. Ob Ampel, Zahlenwert, oder Textausgabe: Die grafischen Blöcke der IoT2-Werkstatt bieten maximale Flexibilität bei der Prgrammierung. Der eigenen Kreativität sind praktisch keine Grenzen gesetzt.
Zum Bau sind nur wenige Schritte notwendig. Wie das genau geht, zeigen wir euch hier Schritt für Schritt.
Hinweis: Unsere Selbstbau-Ideen basieren auf der Hardware des IoT-Octopus oder des Adafruit Feather HUZZAH ESP8266. Unsere IoT-Werkstatt bietet aber auch die ideale Plattform für alle anderen esp8266 basierten Systeme (NodeMCU, Wemos D1). Den dazu notwendigen Schaltplan des Octopus gibt es hier. Leider ist der Weltmarkt an Bauteilen mittlerweile fast leergefegt. Guido Burger bietet eine DIY-Universalplatine und Bausätze, mit der sich noch verfügbare Komponenten nutzen lassen. Auch die Make aus dem Heise-Verlag verschenkt solche Platinen.
Was haben Hygienemaßnahmen, Abstandsregeln und Masken gemeinsam?
Richtig, diese Maßnahmen helfen uns, das Ansteckungsrisiko zu verringern und damit die für den zukünftigen Pandemieverlauf so wichtige Reproduktionszahl R zu verkleinern. Die Zahl R ist ein Maß dafür, wieviele weitere Menschen eine infizierte Person ansteckt. Ist R>1, so sehen wir einen exponentiellen Kankheitsverlauf in der Gesellschaft und müssen wieder stärkere Maßnahmen (Schulschließungen) befürchten. Fachleute sprechen von einer jahrelang möglichen "Hammer und Tanz"-Strategie. Hintergründe dazu und verschiede Szenarien finden sich in der liebevoll illustrierten interaktiven Lerneinheit von Marcel Salathé und Nicky Case, auf deren Idee auch die nebenstehende Abbildung basiert.
Ziel muß es sein, die Zahl R unter 1 zu drücken, d.h. dafür zu sorgen, dass ein Infizierter im Laufe seiner Erkrankung weniger als eine weitere Person ansteckt. Überall dort, wo Abstandsregeln und Mund-Nasen-Bedeckungen nur schwer umsetzbar sind (z.B. im Schulunterricht), brauchen wir ein weiteres Werkzeug dazu.
Und hier bietet sich das Monitoring des CO2-Gehaltes in der Innenraumluft an.
Kein CO2-Sensor verfügbar, was tun?
Besitzer eines Octopus mit Bosch BME 680 Umweltsensor können den eingebauten VOC-Sensor (volatile organic compounds, flüchtige organische Komponenten) nutzen, um CO2 abzuschätzen (CO2-Equivalent).
Das Funktionsprinzip: Beim Gasaustausch in der Lunge sind nicht nur CO2 und Sauerstoff beteiligt, sondern es gehen weitere Blutbestandteile in die Luft über. Diese organischen Komponenten führen zu einer erhöhten VOC-Konzentration der ausgeatmeten Luft. Ein Software-Sensor in der BSEC-Bibliothek des BME 680 rechnet diese in equivalente CO2-Konzentrationen um. Wir messen damit also nur das von Personen ausgeatmete CO2, das CO2 einer Sprudelflasche könnte dieser Softwaresensor nicht detektieren. Ein Effekt, der für unsere aktuelle Anwendung geradezu ideal passt. Allerdings sollen die Nachteile hier nicht verschwiegen werden: Auch andere VOC-Quellen (Desinfektionsmittel, Alkohol, Mundgeruch, Formaldehyd) verfälschen die Messung. Ggf. müssen die Alarmgrenzen also etwas angepasst werden. Mehr Informationen und Hintergründe zu VOC in Schulen z.B. im Leitfaden für die Innenraumhygiene in Schulgebäuden des Umweltbundesamtes.
Hinweis: Der Software-Sensor benötigt einige Zeit zur Selbstkalibrierung. Der Zustand der Kalibrierung wird im Sensorkanal "IAQ Accuracy" angezeigt. (Accuracy 0: Sensor nicht stabil bis Accuracy 3: Sensor erfolgreich kalibriert). Weitere Information dazu hier. So ein Softwaresensor ist jedenfalls ein tolles Beispiel für den Einsatz von Modellbildung und Machine Learning.
Dank IoT-Superblöcken, können wir die Messergebnisse im Internet sichtbar machen. Nur schulintern, oder sogar weltweit. Einfach per WLAN ins Internet und über die Thingspeak-Datenplattform mitloggen / visualisieren. So ist die Historie eines jeden Raums jederzeit im Blick, einem Lüftungswettbewerb steht also von technischer Seite nichts entgegen. Der Thingspeak-Server von Mathworks erlaubt sogar die Nutzung von Matlab zur statistischen Auswertung oder zur Modellierung von Vorhersagen (näheres zu mathematischen Modellen und Matlab hier). Auch grafische Elemente (Gauge) sind integrierbar. Neugierig? Alles weitere hier.
Und als möglicher Ausblick: Gäbe es eine entsprechende Infrastruktur, so könnte unsere Ampel auch selbst das aktuelle Infektionsgeschehen in unserem Landkreis abfragen. Wir könnten die Warngrenzen also ans aktuelle lokale Risiko adaptieren.
Die CO2-Konzentration allein sagt noch nichts über das Infektionsrisiko. Wichtige Kenngröße ist natürlich auch die Anzahl der im Raum befindlichen Personen. Sind wir selbst die alleinige CO2-Quelle (Einzelbüro), so gibt es auch bei hoher Konzentration kein hygienisches Risiko. Dank Pax-Counter kennen wir aber sogar die Belegung der einzelnen Räume. Ein Pax-Counter zählt anhand der MAC Adresse des WLAN-Interfaces die im Raum befindlichen Smartphones (näheres zum Pax-Counter hier).
Sie verlassen die offizielle Website der Hochschule Trier