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Abstract: Generative Artificial Intelligence has become an integral part of many people’s lives. Large
Language Models (LLMs) are gaining increasing popularity in science and society. While it is well
known that training these models requires significant energy, inference also contributes to their total
energy demand. Therefore, we analyze how to use them as sustainably as possible by investigating
the efficiency of inference, especially on local hardware with limited computing power. We develop
metrics for quantifying the efficiency of LLMs on the edge, focusing on the most influential factors
quality, time, and energy. We compare the performance of three different state of the art generative
models on the edge and assess the quality of the generated text, the time used for text creation and
the energy demand down to the token level. The models achieve between 73, 3% and 85, 9% on the
quality level, generate 1, 83 to 3, 51 tokens per second while consuming between 0, 93 and 1, 76 𝑚𝑊ℎ

of energy per token on a single-board computer without GPU-support. The findings of this study
demonstrate that generative models can produce satisfactory outcomes on edge devices. However, a
thorough efficiency evaluation is recommended before deploying them in production environments.
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1 Introduction

While we ask ourselves if machines can ever be as smart as humans, a single-board computer
smaller than the palm of our hands may already have generated a plausible-sounding answer.
Until recently, resource limitations made it difficult for edge devices to effectively handle
generative AI models. However, with the rise of Large Language Models (LLMs) entering
the public domain, rapid advancements in generative AI research, and the momentum of the
open-source movement, edge devices can now overcome these challenges. In this paper, we
examine their performance by assessing the efficiency of three generative models operating
on a resource-limited edge device measuring the quality of generated texts, runtime during
text generation, and energy demand during inference. We calculate their efficiency using
our metrics customized for LLM inference on the edge. While a model like Llama 3 [Me24]
with 8 billion parameters was trained for 1,3 million GPU hours, we aim to determine
how much time and energy this specific model requires to generate a single useful token
on resource-constrained hardware. This article is structured as follows: We begin with a
brief state-of-the-art overview, followed by our methodology. Next, we develop metrics and
present experimental results. We summarize our findings in the discussion and conclude in
the final chapter. The complete source code, data, and results are publicly available2.
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2 State of the Art

Many Transformer-based models [Va17] are utilized in various language-based applica-
tions, such as conversational agents. LLMs like GPT-4 [Op24] demonstrate human-level
performance on numerous professional and academic benchmarks. However, their billions
of parameters typically render them unsuitable for resource-limited devices. Recently,
techniques like quantization [Li24] and pruning [Su24] have significantly optimized model
efficiency by reducing computational requirements and the number of parameters. Conse-
quently, small LLMs like Llama 3 [Me23], Mistral [Ji23], and Phi-3 [Ab24] now range from
3,8 to 8 billion parameters, making them more resource efficient than larger models.

Despite these advancements, there is still a significant need to investigate the efficiency of
LLM inference to ensure their environmentally friendly use. Researchers commonly use
metrics such as time to first token and normalized energy consumption to gauge performance
and energy efficiency of different models across various hardware settings [St24]. Wilkins
et al. [WKM24] utilize metrics such as total energy consumption, runtime, energy per
token, and throughput to evaluate and optimize the energy efficiency of LLM inference
tasks across different hardware configurations. Faiz et al. [Fa24] evaluate the inference
stage of LLMs by measuring the operational carbon footprint, total energy consumption,
and hardware efficiency. They use these metrics to analyze the energy impact of various
hardware configurations and data center efficiencies, providing a comprehensive assessment
of the environmental footprint during the inference phase. Samsi et al. [Sa23] conducted
benchmarks on LLMs using different GPUs to understand inference performance and
energy costs. They made experiments to benchmark the inference performance and energy
costs of different sizes of models using various metrics, including energy per second,
energy per decoded token, energy per response, and the effects of GPU power capping to
provide comprehensive understanding of energy efficiency of LLM inference. Argerich et al.
[AP24] evaluate energy efficiency using metrics such as total energy consumption, energy
consumption per component, energy efficiency, and inference latency across various LLMs.
While current works present a variety of metrics for assessing the energy consumption, the
need for comprehensive metrics that quantify the efficiency of LLM inference especially
on edge devices is often overlooked. Our research aims to address this gap by focusing on
efficiency evaluation on edge devices by using quality, runtime and power consumption as
most important factors of influence.

In addition to inference, model training is particularly energy-intensive. Training of Llama
3 8B [Me24] emitted 390 tons of CO2 equivalents which corresponds to 126 round-trip
transcontinental flights from Berlin to New York for a single individual3. Additionally the
training process required 1,3 million GPU hours. This amount of time equates to the entire
lifetimes of 2 humans with a life expectancy of 74 years. Llama 3 70B, which is the largest
version of the series, emitted 1900 tons of CO2 equivalents and used 6,4 million GPU hours,
emitting 4,87 times more CO2 equivalents and using 5,3 more GPU-hours than Llama 3 8B.

3 UBA Carbon Calculator, https://uba.co2-rechner.de/en_GB/mobility-flight, accessed: 06/24/2024
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3 Methodology

The purpose of this work is to find out how we can use LLMs in an environmentally friendly
way by examining their efficiency during inference on the edge. Therefore we envisioned
a scenario where a curious user interacts with a conversational agent on an edge device,
posing 50 distinct questions covering 33 different topics, each question taking 3 seconds to
ask. The user asks no follow-up questions and only utilizes the questions from our dataset.
In our scenario, the user repeats this process for three different LLMs, while quality, latency
and energy demand is measured and recorded. The components of our experimental setup
are described in this chapter.

3.1 Tools

All experiments in this work are conducted on a single-board computer. Specifically, we
choose a Raspberry Pi 5 Model B Rev 1.04 as our edge device under test, suitable for a wide
range of use cases ranging from educational to industrial applications. It is equipped with a
64-bit quad-core Arm Cortex-A76 processor running at 2,4GHz and 8GB of RAM. The
single-board computer runs Raspberry Pi OS (64-bit), also known as Debian GNU/Linux
12 (bookworm). Energy measurements are performed by a USB-C multimeter5 with ±
1‰ measurement accuracy. During measurements, it is connected to the single-board
computer via USB-C/Power port and a laptop via USB port for data-logging purposes. Our
conversational agent is based on Ollama6, which we use to run different LLMs on our device
under test. Additionally, Ollama Python Library is used to automate conversations.

3.2 Data

The questions we ask our conversational agent during the experiments originate from the
Stanford Question Answering Dataset SQuAD2.0 [Ra16], which was created to understand
the types of reasoning required by computer systems to answer these questions. We created
a subset with 50 randomly selected questions and corresponding answers. The selected
questions are about 33 different topics, including categories like Computational Complexity
Theory, Geology, Oxygen, Imperialism and European Union Law. This is an example:

Topic: Prime Numbers

Question: What theorem defines the main role of primes in number theory?

Answer: The fundamental theorem of arithmetic

4 RPi 5 Specs, https://datasheets.raspberrypi.com/rpi5/raspberry-pi-5-product-brief.pdf, accessed: 07/21/2024
5 USB-C Multimeter Specs, https://joy-it.net/en/products/JT-TC66C, accessed: 07/21/2024
6 Ollama Repository, https://github.com/ollama, accessed: 07/21/2024
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3.3 Models

In our experiments, we investigate three distinct models designed to generate human-like
text in response to text-based questions from users. The first model is Llama 3 8B [Me23],
developed by Meta AI, featuring 8 billion parameters. It was pretrained on approximately 15
trillion tokens sourced from public data. The second model is Mistral 7B [Ji23] by Mistral
AI, utilizing 7,3 billion parameters. It surpasses Llama 2 13B on all tested benchmarks and
outperforms Llama 1 34B on several benchmarks. Mistral 7B focuses on achieving top-tier
performance while ensuring efficient inference, according to its creators. However, details
regarding the amount of training data and carbon emissions during its training phase are
undisclosed. The third model is Phi-3 [Ab24], a 3,8 billion parameter language model by
Microsoft, designed for deployment on edge devices like smartphones. It was trained on
3,3 trillion tokens, incorporating filtered web data from various public internet sources and
synthetic data generated by other LLMs. Phi-3 is categorized as a Small Language Model
(SLM), tailored for efficient inference tasks.

model parameters size training data quantization carbon emitted

Llama 3 8B 4,7 GB ∼15T tokens 4-bit 390 tCO2eq.
Mistral 7,3B 4,1 GB - 4-bit -
Phi-3 3,8B 2,3 GB 3.3T tokens 4-bit -

Tab. 1: Models which are used and compared in this work

4 Results

4.1 Quality

An important factor for evaluating the efficiency of a generative language model is the quality
of its responses. A model that provides factually correct answers to various questions works
more efficiently than a model producing mostly incomplete answers containing irrelevant
information. Therefore, we evaluate the quality of the generated answers compared to
the reference answers in the dataset by performing human-based and LLM-based quality
analysis. Human-based evaluation is done by the authors, while LLM-based quality analysis
is performed by GPT-4o7. We choose three weighted factors and set their values for
evaluating our LLM-generated answers which are accuracy with 𝑤𝑎 = 0, 5, completeness
with𝑤𝑐 = 0, 3 and relevance with𝑤𝑟 = 0, 2. We weighted accuracy higher than completeness
and relevance because it affects the response’s quality the most.

𝑄𝐼 =
1

𝑤𝑎𝑎 + 𝑤𝑐𝑐 + 𝑤𝑟𝑟
(1)

7 GPT-4o, https://openai.com/index/hello-gpt-4o, accessed: 07/22/2024
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Figure 1 demonstrates varying levels of answer quality among the models, while Mistral 7B
performs best on our dataset, followed by Phi-3 3,8B and Llama 3 8B with quality scores
ranging from 0,733 to 0,859. These values indicate that all models were able to answer the
questions from the dataset with good to very good quality. The authors rate the quality to be
slightly worse than GPT-4o for all models. This result illustrates, that good results are also
possible with comparatively small models running on a heavily performance-limited device.

Fig. 1: GPT-4o and human-based quality evaluation of LLM-generated answers

4.2 Time

Another important variable influencing efficiency is work done per unit of time. In our case,
this is measured by the time it takes, to generate a single token, which corresponds to approx.
4 characters of common English text8. We developed the following metric to normalize the
values between 0 and 1, where 𝑡𝐼 corresponds to time per predicted token. The more tokens
predicted per second, the lower the calculated value for 𝑡𝐼 and the higher the value for 𝑇𝐼 .

𝑇𝐼 =
1

1 + 𝑡𝐼
(2)

Figure 2a reveals large differences in tokens generated per second. While Llama 3 8B
generates 1,83 tokens, Phi-3 3,8B generates 3,51 tokens. Therefore, it is 1,92 times faster
than Llama 3 8B and 1,70 times faster than Mistral 7B. The values in figure 2b reflect that
Llama 3B has the largest median and max number of tokens generated per answer. While
answering every question in the dataset, Llama 3 8B generated a total of 10.377 tokens, fol-
lowed by Mistral 7B generating 8.779 tokens and Phi-3 3,8B generating 8.723 tokens in total.

8 OpenAI Tokenizer, https://platform.openai.com/tokenizer, accessed: 07/22/2024
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(a) Generated tokens per second (b) Generated tokens per answer

Fig. 2: Comparison of generated tokens per second (a) and generated tokens per answer (b)

When considering these results from the perspective of efficiency, Phi-3 3,8B operates most
efficient on our dataset, as it generates the most tokens per second and also produces the
fewest tokens in total. Additionally, the models also require time for the initial loading phase
which takes place at the beginning of a conversation. Llama 3 8B requires 58,73 seconds,
Mistral 7B requires 49,77 seconds and Phi-3 3,8B requires 34,09 seconds on our hardware
under test to load the model.

4.3 Energy

The third variable we investigate is energy demand. Our measuring device has a measurement
accuracy of ± 1‰ and provides us with one value per second for volts (𝑉) and amperes (𝐴),
which we use to determine the energy demand of our scenario in milliwatt-hours (𝑚𝑊ℎ).
Therefore we developed another metric to examine how much energy in 𝑚𝑊ℎ it takes to
generate a single token. We added 𝑤𝐸 as additional weight to make 𝐸𝐼 adjustable.

𝐸𝐼 =
1

1 + 𝑤𝐸𝐸𝐼

(3)

Figures 3, 4 and 5 illustrate that the power consumption in watts for generating a response
is approx. the same across all models. The baseline for the operating system is at 3,4 𝑊

on average. However, if we consider the entire time span it takes to answer every question
in the dataset, it is evident that Phi-3 3,8B consumes the least amount of energy overall,
because total energy demand is 8.146,94 𝑚𝑊ℎ for Phi-3 3,8B, 13.338,30 𝑚𝑊ℎ for Mistral
7B, and 18.230,88 𝑚𝑊ℎ for Llama 3 8B.



Fig. 3: Energy demand of Llama 3 8B to answer every question in the dataset

Fig. 4: Energy demand of Mistral 7B to answer every question in the dataset

Fig. 5: Energy demand of Phi-3 3,8B to answer every question in the dataset

From an energy efficiency perspective, Phi-3 3,8B is most efficient in our scenario, as it has
the lowest energy requirement overall with 0,93 𝑚𝑊ℎ per token, followed by Mistral 7B.

model per token per question total

Llama 3 8B 1,76 mWh 364,61 mWh 18.230,88 mWh
Mistral 7B 1,55 mWh 266,77 mWh 13.338,30 mWh
Phi-3 3,8B 0,93 mWh 162,94 mWh 8.146,94 mWh

Tab. 2: Energy demand of LLMs for answering 50 questions on an edge device



4.4 Efficiency

We formulate our final metric to assess the inference efficiency of LLMs on an edge device
by incorporating our variables quality, time and energy. We weight each of the three factors
with a value between 0 and 1, whereby the weights can be adjusted depending on individual
or task related preferences. For the final evaluation, 𝑤𝐸 = 0, 4, 𝑤𝑇 = 0, 3 and 𝑤𝑄 = 0, 3 are
used as weights for the calculation of the values for our metrics energy, quality, time and
the final efficiency score.

𝑀𝐼 = 𝑤𝐸𝐸𝐼 + 𝑤𝑇𝑇𝐼 + 𝑤𝑄𝑄𝐼 (4)

According to the results in table 3 Mistral 7B generated the answers with the best overall
quality, but finally, it is Phi-3 3,8B which has the best efficiency score in total.

model energy time quality total (𝑀𝐼 )

Phi-3 3,8B 0,380 0,759 0,804 0,621
Mistral 7B 0,092 0,673 0,859 0,496
LLama 3 8B 0,070 0,646 0,746 0,446

Tab. 3: Efficiency of the inference of LLMs on a resource-constrained edge device

5 Discussion

In this paper, we investigated the efficiency of LLM inference on edge devices and developed
metrics to quantify it. We established three central components to measure inference
efficiency: quality of the generated text, time for generating the text, and energy demand
during token prediction. The quality of answers was assessed by a human-based evaluation
performed by the authors and an LLM-based evaluation performed by GPT-4o. Quality
evaluation was done by rating the generated answers to 50 different questions based on
the factors accuracy, completeness, and relevance. The models under test achieved quality
scores ranging from 73,3% to 85,9% and thus demonstrate their ability to generate sufficient
answers.

Each model achieved distinct speed in token generation, ranging from 1,831 tokens per
second for Llama 3 8B, to 2,06 tokens per second for Mistral 7B, and up to 3,514 tokens
per second for Phi-3 3,8B. These values indicate, that the models are definitely suitable for
practical use on a device with very limited ressources. However, it should also be taken
into account that loading the model into memory can also take a significant amount of time.
Additionally, Llama 3 8B generated 10.377 tokens to answer all 50 questions in the dataset,
whereas Mistral 7B created 8.779 tokens and Phi-3 3,8B produced 8.723 tokens. These
values illustrate that the number of model parameters has a significant influence on the
speed of inference, as Phi 3 3,8B was considerably faster than Llama 3 8B.



Energy demand was measured in milliwatt-hours (𝑚𝑊ℎ), with Phi-3 3,8B having the lowest
energy demand at 0,934 𝑚𝑊ℎ per token and Llama 3 8B having the highest demand at 1,76
𝑚𝑊ℎ per token. While Phi 3 3,8B required a total of 8.146,94 𝑚𝑊ℎ to answer all questions,
Mistral consumed 13.338,30 𝑚𝑊ℎ and Llama 3 8B consumed 18.230,88 𝑚𝑊ℎ. Finally,
we quantified overall efficiency, finding that Phi-3 3,8B had the best efficiency score at
0,621, followed by Mistral 7B at 0,569, and Llama 3 8B at 0,504. This clearly shows that
the model with the fewest parameters (Phi 3 3,8B) performs best on our dataset and is the
most efficient LLM we tested.

6 Conclusion

Our research demonstrates that relatively small state of the art large language models with
3,8 to 8 billion parameters can run on a modern single-board computer with very limited
computational resources without the need for a GPU or external inference accelerators. Our
findings show that a model with the most parameters does not necessarily achieve the best
performance, nor is it most efficient. The ability to generate responses in reasonable time
and with satisfactory quality indicates that these models are suited for practical use, which
makes them useful for a wide range of text-based applications, ranging from voice assistants
to text summarization tools. In future research, we plan to explore the efficiency of various
LLMs on different hardware. While this study focused on hardware with limited resources,
we aim to compare hardware specifically designed for AI applications in the future. It is
also conceivable to explore efficiency optimization opportunities of LLM-based systems on
edge devices based on the results of this work.

In conclusion, our study underscores the importance of considering not only the performance
metrics of LLMs on edge devices but also their energy efficiency and overall suitability
for practical applications requiring reasonably fast responses while demanding only small
amounts of energy. However, the user should note that the conversational agent based on
the models examined in this work is a seemingly competent generalist, rather than a narrow
specialist in every possible field. Therefore its answers should always be questioned.
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