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Abstract According to the guiding principles of Indus-
try 4.0, edge computing enables the data-sovereign and
near-real-time processing of data directly at the point of
origin. Using these edge devices in manufacturing orga-
nization will drive the use of industrial analysis, control,
and Artificial Intelligence (AI) applications close to pro-
duction. The goal of the EASY project is to make the
added value of edge computing available by providing
an easily usable edge-cloud continuum with a runtime
environment and services for the execution of AI-based
analysis and control processes. Within this continuum,
a dynamic, distributed, and optimized execution of ser-
vices is automated across the entire spectrum from cen-
tralized cloud to decentralized edge instances to increase
productivity and resource efficiency.

Keywords Edge-Cloud Continuum · Energy- and
Resource-Efficiency · Analysis and Control Processes

1 Introduction

Industry 4.0 (I4.0) [13] denotes the technological change
towards intelligent production in which Artificial In-
telligence (AI) methods, data analysis techniques, the
Internet of Things (IoT) and distributed systems are
integrated into industrial processes. In this context, opti-
mization and efficiency-increase of production processes
is investigated [20,22,38]. The growing automation and
interconnection of factories offers new opportunities,
such as the promising use of edge nodes [46]. These
are miniaturized computing devices located directly in
the production environment. The exploration of the in-
dustrial potential of these edge nodes is addressed by
the EASY project1 running from 2022 until the end of

1 Website of the EASY project: https://easy-edge-cloud.de/
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2025. The acronym stands for ”Energy-Efficient Analy-
sis and Control Processes in the Dynamic Edge-Cloud
Continuum for Industrial Manufacturing” and is the
name of a German consortium funded by the Federal
Ministry for Economic Affairs and Climate Action. In
addition, an affiliated project financed by the Austrian
Research Promotion Agency contributes toward this
research. Namely, the consortium consists of the follow-
ing partners: Empolis Information Management GmbH
(consortia leader), German Research Center for Artificial
Intelligence (DFKI), Robert Bosch GmbH, Fraunhofer
IOSB-INA, Trier University of Applied Sciences – En-
vironmental Campus Birkenfeld, ArtiMinds Robotics
GmbH, coboworx GmbH, and Salzburg Research.

Within EASY , this consortium aims to overcome
technical barriers in industrial manufacturing by cre-
ating an open and standardized Edge-Cloud Contin-
uum (ECC) that should enable the optimized execution
of analysis and control processes. This continuum is a
distributed infrastructure that includes the described
edge devices as well as a central cloud, and enables dy-
namic distribution of computations across all contained
devices [35,39]. AI methods are used to plan and execute
both types of processes in the ECC. These methods can
run both, centralized on the cloud and decentralized
on the edge. The inclusion of the edge nodes allows
analyzing the high-frequency data in near real-time, and
also enables data protection for companies through non-
sharing. This standardized, freely available ECC should
lower the entry barriers for small- and medium-sized
enterprises to these technologies. To demonstrate and
evaluate the described aspects, various prototypes are
developed.

In the remainder of this paper, an overview of the
architecture of the EASY project and the considered
processes is given in Sect. 2. In Sect. 3, the AI methods
applied to these processes are presented. The use cases
to demonstrate the project’s results are described in
Sect. 4. Afterward, Sect. 5 provides a summary and an
outlook for future research in the context of our work.

2 EASY Architecture and Processes

In this part, the overall EASY framework targeting the
project’s goals is presented. First, the basic architecture
is introduced in Sect. 2.1. Then, the processes within this
are described in Sect. 2.2 and classified in the Business
Process Management (BPM) [12] research state.

2.1 Architectural Overview

The ECC is a distributed environment composed of com-
puting and network infrastructure [35,39,24]. Here, edge

Far Edge
Computing Cluster /

Big Data Storage

Edge
Node 1

Edge
Node N

Edge
Node 2

On-Premise Nodes

I4.0 Asset N

...

I4.0 Asset 1 I4.0 Asset 2

Service
Repository

Public Cloud
Regional Edge

Near Edge

Figure 1 An Overview of the EASY Architecture.

devices offer local data processing and storage as well as
service execution, whereas the cloud provides the same
functions on a server network with higher capabilities.
These edge nodes can be run by individual members
(i.e., industrial companies) while a separate entity pro-
vides a central cloud platform. In the ECC, data and
computations can be flexibly moved between such edge
devices and the cloud. This allows the transfer of data
to the cloud to be minimized, as the compute resources
available on the edge can be used to at least partially
process the data. Therefore, the significant cost involved
with large data transfers can be reduced. However, the
cloud orchestrates the ECC and determines where anal-
ysis or control processes should be computed within the
continuum. In addition, this architecture can address
the issue of data privacy by allowing companies to avoid
moving specific data to a cross-enterprise cloud solution.
Therefore, certain assumptions such as the integrity of
the cloud platform provider have to be made.

We will develop such a continuum for the EASY
project in the form shown in Fig. 1. The lowest level
is formed by individual assets on the production floor,
such as manufacturing robots or IoT control compo-
nents [21,45]. These assets are usually constrained in
terms of computing power. However, they can still be
used to perform small computational tasks. To enhance
the compute power at these positions, the assets are
connected to edge nodes, which form the second-lowest
layer. At these nodes and along the continuum, services
can be run to process, aggregate, or simply pass data to
other entities. Specialized computing infrastructure at
the edge, such as compute clusters or big data storage,
could also be employed before moving to the cloud. In
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this architecture, the path between the edge and the
cloud is paved with different layers of nodes provid-
ing increasing computational capabilities. This enables
a dynamic and optimized execution of AI services, in
terms of metrics, e. g., the project’s namesake energy
efficiency, but also other Green AI and Sustainable Soft-
ware Engineering criteria [49], such as resource and data
efficiency [23]. To identify and optimize such metrics
required for measuring these values in the ECC, a ref-
erence model and an exemplary measurement method
[17] are used as basis. Within the ECC, the AI services
are stored in a central repository based on the Gaia-X
architecture [47]. By using these services on the edge
nodes, the data only requires transmission to the nearest
one with sufficient resources and, in most cases, not all
the way to the cloud.

2.2 Processes in EASY

In EASY , we focus both on analysis and control pro-
cesses and address these dynamically in the ECC using
AI techniques:

1. Analysis Processes: These processes are geared
towards examination and analysis of data, e. g., based
on IoT sensor streams [45]. Considering this, local
analyses such as visual quality control [31] or error
detection [15] are to be carried out. Regarding the
ECC, the analysis will identify the use of resources
such as computing capacity and energy consumption.
In addition, aspects of the decentralized architecture
that can increase data security are explored [10,11].

2. Control Processes: These processes concern the
management of the value creation processes, meaning
the manufacturing facilities and their resources. This
includes the dynamic allocation of these resources
throughout the ECC, as well as the automated plan-
ning of production processes and their flexible and
correct execution [7,27]. In addition to the sustain-
ability criteria, the processes should be robust and
flexible so that in cases of deviations they can still
be executed or adapted accordingly, even in cases of
deviations [16] or changed metrics [7].

In the BPM research field, flexible analysis and pro-
duction processes have already been addressed [29]. Both
processes should focus on their resource efficiency, as
criterion [9] already specified above for each type. To
consider this and other sustainability metrics accord-
ingly, semantic information about the processes must
be available [25] and provided in a suitable semantic
structure [30]. This must be an appropriate digital rep-
resentation of the devices in the ECC or the production

resources, e. g., like a semantic Asset Administration
Shell [4,41]. The approaches mentioned so far rarely
use extensive AI methods. However, these offer great
potential for optimizing adaptive process management
and go beyond manually performed adaptations [27,33].
Therefore, the EASY project targets this issue in the
ECC and in physical smart factories. The AI methods
used to manage these processes are presented next.

3 AI Methods in EASY

In the EASY project, various established AI methods
address processes in the ECC and are investigated for op-
timizing resource usage. In the following, we present the
techniques of AI Planning (Sect. 3.1), Case-Based Rea-
soning (Sect. 3.2) and Distributed Learning (Sect. 3.3)
in this context.

3.1 AI Planning

AI Planning aims at solving a state transformation prob-
lem, where the goal consists of finding a sequence of steps
to transform a discrete world model from an initial state
to a desired goal state [14,19]. This technique is already
applied in the BPM area to increase automation and
support [33]. In EASY , we investigate this technique to
facilitate flexible analysis and control processes dynami-
cally in the ECC. The relevant analysis process mainly
consists of service orchestrations regarding computation
resources in the ECC. Here, the goal state is achieving
an optimal distribution of computation and data across
the individual instances, e. g., for data aggregation. As
the result, this is federated among the participated edge
nodes and the cloud. For the control processes, the man-
ufacturing environment is considered, where the goal
state is a desired product with specific characteristics.
The planning problem thereby consists of finding a se-
quence of executable manufacturing actions which lead
to the desired products. Both, the generated analysis
and the control processes, can be executed automati-
cally. A drawback of solving complex planning problems
is the high computational complexity needed, especially
when used on edge devices. To mitigate this, we will
combine AI Planning with other AI techniques [18].

3.2 Case-Based Reasoning

Case-Based Reasoning (CBR) is an AI method for experi-
ence-based problem-solving [1,5]. Problems and their
corresponding solutions are stored as cases that form
the basis of addressing new problems. Using similarity
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as a criterion, suitable cases are identified, and their
solution is adapted. In the context of the EASY project,
both analysis and production processes are created us-
ing CBR. In the manufacturing domain, CBR can be
used to perform analysis processes such as predictive
maintenance or identifying data quality issues based on
IoT time series data [32,42,43]. The advantage of using
CBR in this context is that in comparison to other AI
methods only a few error cases are required. To optimize
production processes, a case is represented as a work-
flow in the sub-field of Process-Oriented Case-Based
Reasoning (POCBR) [36]. In the context of planning of
processes, POCBR is used to reduce computational com-
plexity and increase flexibility by reusing already solved
problems [28]. Thus, existing plans are retrieved and, if
necessitated, adapted for the new requirements by AI
Planning. In EASY , we use this for flexible planning
and execution of the processes. These CBR applications
for analysis and control are to take place on the edge as
well as in the cloud dynamically.

3.3 Distributed Learning

Distributed Learning is a Machine Learning (ML) [37]
approach performed across multiple computing resour-
ces [40]. Traditional ML and Deep Learning [8] systems
rely on large amounts of centrally stored data, so that
most (locally stored) data cannot be used due to com-
putational complexity. The classical approach in ML or
DL would be to send the (small) data sets of the single
machines to a central server. There, a model is trained
based on the data. In practice though, data often can-
not be transported over a network due to privacy or
bandwidth issues [26,48]. To address this in EASY , we
use Federated Learning (FL) [34] as a distributed ML
approach to keep the data local at each machine as an
edge-node and learn for local analysis processes there.
Instead of explicit data, the local model weights are
shared in the ECC. Besides the advantage that no real
data is sent, all nodes share their knowledge within the
continuum. The respective edge devices can adapt the
globally merged analysis model for their data without
directly influencing the performance of the other local
models. In addition to traditional manufacturing data
analysis using FL, robotic learning and optimization is
also contained in EASY based on this technique. For
this purpose, existing previous work [3] is built upon
to first pre-train predictive robot foundation models on
large data sets in the cloud and then achieve model-
based parameter optimization on the edge devices [2].
Additional to the described communication reduction
in these applications, energy consumption should be
reduced by the distributed FL methodology.

4 Use Cases and Demonstration

To showcase the approaches developed in the EASY
project, six demonstrators are built based on different
use cases, briefly described in the following. The partici-
pating and associated industrial partners aim to ensure
that the demonstrators represent real-world use cases. In
addition to qualitative aspects, quantitative parameters
based on the metrics to be developed, such as energy or
resource efficiency, are examined for each demonstrator.

Together with SmartFactoryKL and SmartFactory-
OWL as associated partners, DFKI and Fraunhofer are
creating two similar setups at the respective, cooperat-
ing locations. These are used to demonstrate the concept
of shared production across multiple sites. This use case
demonstrates the flexible and resilient control processes
as well as analysis processes for quality control. To
apply the POCBR approach, the CBR framework Pro-
CAKE [6,44] is used and extended for the application
in the ECC.

Bosch realizes a demonstrator which is especially
suited to invest analysis processes using FL. The demon-
strator consists of several standardized, interconnected
edge devices whose behavior is monitored and controlled
using a graphical interface. In this setup, the data of
several milling machines connected to edge devices are
processed and models are learned federated on this basis.

FL approaches in the ECC are also being explored
by ArtiMinds in a demonstrator that focuses on robot
learning and optimization. Among others, force-control
and vision-based handling are investigated. The imple-
mentation of the FL methods will also be integrated into
the industrial robot data platform ArtiMinds LAR2.

In another demonstrator, Coboworx and Salzburg
Research, present analysis processes by monitoring the
condition of an industrial robot in a distributed pal-
letizing application. The reliable communication within
the ECC is visualized and measured regarding anomaly
detection, to prevent possible economic downtimes.

Furthermore, the Environmental Campus explores
analysis processes with focus on the resource, data, and
energy efficiency of distributed learning and applies
these in demonstrators for analyzing multi-modal sensor
data.

5 Summary and Outlook

In this paper, we present the idea of the EASY project,
which aims at realizing a dynamic ECC for industrial
manufacturing. Our focus is on the application of AI

2 https://www.artiminds.com/robotics-software-and-services/
learning-and-analytics-for-robots/

https://www.artiminds.com/robotics-software-and-services/learning-and-analytics-for-robots/
https://www.artiminds.com/robotics-software-and-services/learning-and-analytics-for-robots/
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methods to BPM processes, namely to the presented
analysis and control processes. In this context, we de-
scribe various research areas for future work, addressed
within the EASY project. We will demonstrate the
project results in an industrial context and evaluate
them regarding their energy and resource efficiency.
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2. Alt, B., Katic, D., Jäkel, R., Beetz, M.: Heuristic-free Op-
timization of Force-Controlled Robot Search Strategies in
Stochastic Environments. In: IROS 2022, pp. 8887–8893
(2022)
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