
© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained

for all other uses, in any current or future media, including reprinting/republishing this material for

advertising or promotional purposes, creating new collective works, for resale or redistribution to

servers or lists, or reuse of any copyrighted component of this work in other works.



Decentralized Policy Enforcement in Zero Trust

Architectures

Lars Creutz

Institute for Software Systems

Trier University of Applied Sciences

Birkenfeld, Germany

Email: l.creutz@umwelt-campus.de

Guido Dartmann

Institute for Software Systems

Trier University of Applied Sciences

Birkenfeld, Germany

Email: g.dartmann@umwelt-campus.de

Abstract—The introduction of the Zero Trust Architecture
(ZTA) provides continuous improvement in the security of
modern networks, replacing older approaches such as perimeter-
based networks that rely on firewalls or VPN connections. In our
paper, we describe how the basic design of a ZTA can nevertheless
lead to security problems, since decisions are usually made at
a central point in the network. We present an approach on
how this decision can be made in a decentralized manner by
the components of the network itself, in order to be able to
increase the security of the component and the security of the
ZTA. We demonstrate our approach in an Edge-Cloud scenario
and describe all components of the ZTA, for which we provide
an open source implementation.

I. INTRODUCTION

In the rapidly evolving digital landscape, cybersecurity

has emerged as a critical concern for organizations of all

sizes and across all industries. As systems grow increasingly

complex, the traditional perimeter-based security model, where

internal resources are trusted and external ones are viewed with

suspicion, has proven inadequate. Zero Trust Architectures

(ZTA) [1] is therefore seen as a new approach to a security

model.

The ZTA is a security model that operates on the assumption

that no user or device, whether inside or outside the network

perimeter, should be automatically trusted. Instead, every

access request must be validated and authorized, based on a

comprehensive understanding of the user, device, application,

and data. This approach reduces the potential attack surface

and makes it harder for adversaries to move laterally within

the network.

In general, ZTAs can be broken down into three main

components: assets, the Policy Enforcement Point (PEP), and

resources [2]. The communication in ZTA is divided into two

different zones: untrusted up to the PEP and implicitly trusted

from the PEP [2]. The PEP in the view of the National Institute

of Standards and Technology (NIST) [2] is a central point in

the architecture and therefore an attack point that has often

received little attention in the past. A centralized PEP creates

a single point of failure, where if the PEP is compromised,

an attacker can potentially gain unrestricted access to network

resources. Additionally, in distributed and cloud-based envi-

ronments, centralized enforcement can introduce latency and

inefficiencies due to the need to route all traffic through a

single point for inspection and policy enforcement. This is

particularly problematic in the case of DDoS attacks, which

can disrupt the entire ZTA in the event of a successful attack

on the PEP. Implicit trust zones one the other hand are areas

within a network where all entities are automatically trusted

once they have been authenticated and granted access. This,

again, could allow for lateral movement inside the network

and exposes resources to various kinds of threats.

While centralized policy enforcement and implicit trust

zones have been standard practice in traditional network

security, they can create vulnerabilities and inefficiencies when

applied within a Zero Trust model.

Our approach instead advocates for decentralized enforcement

and a lack of implicit trust, making it a more resilient and

effective model for today’s complex, distributed networks,

especially when applied to areas where primarily managed de-

vices are used. We address the mentioned and other problems

of centralized ZTA and describe why decentralized approaches

can be useful. In addition, we describe how to use free/low-

cost yet highly available infrastructure from well-known git

providers to manage policy in a secure and decentralized

manner. Furthermore, we use cyber-physical contracts within

our ZTA to describe processes in an understandable way and to

securely exchange data. We begin by describing related works

and the contributions of the paper. Section II then explains our

decentralized policy enforcement approach and how the stake-

holders of a traditional ZTA operate in our context. In order to

illustrate and test our approach, we describe an implementation

of an example service with decentralized policy enforcement

in Section III. Section IV summarizes the work and provides

an outlook for further improvement and application of our

decentralized policy enforcement architecture.

A. Related Works

A well-known approach to ZTA is given by NIST in [2].

Their fundamental description of ZTA we later adopt as state

of the art and compare our approach to improve ZTA in

general through decentralized enforcing of policy. Another

well-known approach is BeyondCorp [3], the Zero Trust model

of Google. The authors describe the aforementioned problem

of enforcing perimeter security and challenge the use firewalls

to secure a network. To prevent lateral movement within a



network, Google here waives special privileges on the in-

tranet and continuously verifies each stakeholder per resource.

BeyondCorp is primarily considering managed devices that

join unprivileged networks via a certificate and RADIUS1

while unmanaged devices are assigned in a guest network.

Communication flows through an ”access control engine” that

manages access to resources behind it, similar to the PEP.

There are some works that contain decentralized approaches

to policies across different areas. The authors in [4] describe a

Decentralized Policy Information Point model to enforce poli-

cies across different domains with centralized PEPs. Among

other things, [5] describes how policies can be distributed

in order to check multiple policies when accessing a single

resource. However, the work does not refer specifically to

ZTAs.

To the best of our knowledge, there are no approaches to de-

centralized ZTA with policy enforcement at the resource level

in the literature. However, some works criticize components

of centralized ZTA that are improved by our work through

decentralization. The authors in [6] describe challenges and

security risks, an excerpt of which is presented below, which

are improved by our ZTA:

a) PEP as new attack surface: The authors name attacks

like DDoS, route hijacking, or supply chain attacks on the

PEP as a core part of the ZTA. Centralizing the PEP can

make for major system failures if all requests have to be

routed through this component. Furthermore, the PEP can

be a popular target for advanced attacks to then route false

requests to the resources. Our approach reduces these attack

opportunities by having resources handle the function of the

PEP and managing the policy in a decentralized manner.

b) Unauthorized policy changes: The authors in [6] share

concerns from [2], where unauthorized policy changes can

cause damage in a ZTA. Remedies are described in constant

monitoring of policy changes and auditing of the enforcement

code [2]. We use several cryptographic methods in our ZTA

to safeguard and track policy changes.

c) Vendor lock-in: The authors in [6] criticize possible

vendor lock-ins and describe IoT scenarios and incompat-

ibilities between operators and the problem of transferring

this to ZTA components. We use well-established standard

software in our ZTA and different providers in parallel from

the beginning, which makes an extension, reduction or change

seamlessly possible.

d) Standardization: Here, the authors criticize that there

is little standardization in the area of policy management [6].

Various approaches exist in the literature, such as in [7], where

a policy language is defined to specify firewall rules. The work

builds on several other approaches to describe a access control,

for example on a markup language [8] and a risk-adapable

model [9]. In addition, there are various Software as a Service

offerings from well-known manufacturers that rely on their

own proprietary implementations, such as Cloudflare [10] and

Google Cloud [11]. This further reinforces the aforementioned

1https://datatracker.ietf.org/doc/html/rfc2865 (Accessed October 2023)

Fig. 1. General structure of a ZTA referring to NIST [2].

point of vendor lock-in. Our approach uses json as format and

is therefore widely applicable and human readable.

B. Contribution

Below we briefly outline the contributions of the paper:

a) Patti: With the paper we also publish the Patti [12]

project open source under the MIT license. Patti allows the

creation and processing of Cypher Social Contracts [13]

without the direct use of Fides [14]. We use cyber-physical

contracts for authentication which allows to describe the pro-

cesses in a human-readable way and creates understandability

when observing the actions of stakeholders inside the network.

b) (Edge-)Device Authentication using Cypher Social

Contracts: We explain the approach of authenticating devices

to resources with secure Cypher Social Contracts [13]. For

this purpose, we use Patti to create contracts between assets

and resources using decentralized policy information.

c) Decentralized Policy Model for Zero Trust Applica-

tions: We introduce a method for describing and using a Zero

Trust Policy in a simple, cost-effective, and secure manner.

We show how individual resources and assets use the policy

and explain advantages compared to the traditional approach

of ZTAs.

d) Decentralized Policy Enforcement on Resources: We

further show how policy enforcement within a Zero Trust

Architecture can be achieved by the resources themselves.

In this context, we explain how our approach differs from

common ZTAs.

e) Policy Administration: We describe a secure approach

to managing the decentralized policy. Different cryptographic

methods are used for this purpose in order to prevent possible

attacks on the policy administration.



Fig. 2. Our approach for a decentralized ZTA where the resources themselves
enforce the rules of the policy. The policy is secured by two signature methods
and managed via redundant git operators.

II. DECENTRALIZED POLICY ENFORCEMENT

A. Differences to NIST Zero Trust Model

Our approach differs from the NIST approach [2] and is

characterized by more decentralization and enforcement of the

policy at the resource level. We consider it problematic that

the Policy Enforcement Point (PEP) must be trusted from a

resource perspective, thus making the division into untrusted

and implicit-trusted zone (see Fig. 1). The approach is useful

when Zero Trust principles are applied to organizations with

a high density of legacy services. Here, security is generally

improved without generating an immense workload and ad-

justing all services. For a new development of a zero trust

architecture, however, it should be considered whether the

PEP can be designed in a more decentralized way, as in our

approach (see Fig. 2). The security of resources is improved

by the elimination of a central PEP, since no component per

se needs to be trusted. This also strengthens the quality of the

resource’s implementation and prevents careless errors in its

management.

Furthermore, we concretize an approach how publicly avail-

able infrastructure like GitHub and GitLab can be used to

describe, distribute and decentralize the policy in a ZTA.

Using git in general prevents the vendor lock-in mentioned in

[6]. The methods we suggest for the respective providers are

generally offered by all git operators, for example rules that

commits must be signed and must originate from a certain

party. Furthermore, our approach uses redundant providers

right from the start, which makes it easier to switch. If a

git provider can no longer be used, it can be easily replaced

without the system suffering any downtime.

Other attack vectors described in [6] are DDoS, route

hijacking or supply chain attacks. Since in our approach the

resources themselves are responsible for enforcing the policy

and thus a central PEP is not required, the system as a whole is

more difficult to attack via DDoS. Furthermore, the resources

can be scaled individually, which is only possible to a limited

extent with a central PEP, since all requests must first be

forwarded via it. Our approach therefore makes it easier to

scale dynamic services more easily and securely, which can

also lead to a reduction in cloud costs.

B. Policy Definition

The entire policy is defined in a single json file that is

used by every stakeholder of the architecture. Utilizing json

as a human readable format allows for easy administration

of the policy. To give a brief example, the policy for our

example scenario describing the Edge-Cloud device and the

used resource is defined in Listing 1.

{

"devices": [

{

"device-id": "ozy-1",

"services": [

{

"service-id": "ventilation",

"post": "upload,auth",

"get": "current_model,policy"

}

],

"public_key": "PVQaczM7DeVFRxnnVU+

↪→ gLIoUjLU4BIbtaWByWqupYBg=",

"room": "9925-115"

} ],

"services": [

{

"service-id": "ventilation",

"public_key": "yAPHMzJP3cyNSk6D+

↪→ uaMqrNWQyLmbnH/3clBZsGfoNE=",

"template": "a8cc[...]ba6f",

"ip": "localhost",

"port": "5000"

}

]

}

Listing 1. Policy definition in our example scenario.

Defining the policy in this way offers several advantages:

The configuration effort of assets can be reduced by keeping

the entire architecture of the system in one central point. In

addition, services can be easily changed if, for example, they

undergo a change of their internal IP address. Internal DNS

servers can even be omitted, which minimizes further attack

vectors like DDoS or cache poisoning [15] because assets

directly use the IP:Port combination to reach the resources.



This is particularly useful and suitable for our scenario, as

the Edge-Cloud devices are centrally managed and thus no

unmanaged devices are part of the system. We describe the

services using simple REST APIs and specify for each asset

which route (GET, POST) it is allowed to call on that service.

Other approaches such as Remote Procedure Calls could be

implemented accordingly. The definition of a service also

contains a public key and a hash of a Template from which a

Cypher Social Contract [13] can be created for authentication

to the respective resource. Templates define the processes and

responsibilities within a Cypher Social Contract [13]. Accord-

ingly, different approaches can be used for authentication.

We demonstrate this using an authorization token based on

a minimal Template. Other mechanisms, such as multi-factor

authentication, can be incorporated into the Template in a

similar way.

C. Policy Administration

In order to configure the policy, the policy administrator

modifies the policy file described above. Every change must

be secured by two signatures. First, the hash of the new policy

file is signed (KEd25519) [16], followed by the git commit

that synchronizes the policy changes (KGPG). The changes

are then synchronized with the git repositories. Here, the git

operators check whether the respective commit has a correct

signature. This is a first hurdle for possible attacks. Even if an

incorrectly signed commit reaches an asset or resource through

the manipulation of a git operator, the signature is validated

again locally and it is ensured that every commit of the

repository is signed by the known GPG key. Should an attacker

control the GPG key, the second signature method (Ed25519)

provides further security. Only when both signatures have been

validated the policy update is considered valid. Accordingly,

the two signature keys should be managed by two different

systems/persons. Our approach therefore provides solutions

to the problems mentioned before for unauthorized policy

changes.

D. Assets and Authentication

Assets represend the Edge-Cloud device in our Zero Trust

Architecture and communicate with a service (considered a

resource). The devices are managed devices that are easy to

configure:

• Import the corresponding public key to KGPG.

• Create an account for the usage of Cypher Social Con-

tracts [13] on device. An account consists of a private

(secret) key and a public key and, like the key KEd25519

of the policy administrator, operate on Curve25519 [17].

• Include the policy in the local application code. This

can be boilerplate code in a shared library within any

organization.

• Use the policy information for the application context:

Which endpoint to contact, which Template to use to

create a Cypher Social Contract [13].

The enumeration shows that the configuration of the individual

devices can be automated quite easily and it then only depends

on the use case in various contexts where application-specific

code must be implemented. After a device has been configured

correctly, the policy administrator just needs to add it to

the policy, describe its specific permissions per resource, and

publish an update to the policy.

E. Resources and Policy Enforcement

Resources correspond to services within a network that are

used by users or assets. In our ZTA, we assume that resources

are accessed via REST APIs. One of the responsibilities of a

resource is to ensure that the current valid policy is being used,

which means that each resource within our ZTA periodically

checks to see if an update has been pushed out by the policy

administrator. This process can be simplified by implementing

a special REST (POST) route per resource, which allows to

react on push events of the used git providers. Here webhooks

are used (see e.g. GitHub [18] or GitLab [19]) to tell the

resource that the repository has been updated. To update

their local repository with the policy, resources perform the

following operations:

• Perform pull operation on local repository. If the process

exits with a nonzero exit code, indicating an error, do

not update the policy. This ignores potentially dangerous

changes, since even a forced push operation by the policy

administrator will result in an error. Accordingly, the

history of the policy is clearly trackable and every change

is verifiable.

• For each commit (new and previously known) verify

the signature using the verify-commit2 command. This

prevents multiple commits from being added by the

policy administrator, but only the last one having a correct

signature.

• Verify the second signature (issued by KEd25519) of the

update policy file. The check is performed with a custom

bash script that utilizes the Fides [14] command line

interface to check the signature against the SHA256 hash

of the policy file.

After the policy update, the resources each update the permis-

sions of the assets for the resource itself. Again, updating the

policy can be easily shared across organizations in the form

of a shared library, making it easy to integrate and maintain.

In order to check a specific endpoint within the API against

the policy, the resource uses the decorator apikey required

which checks per route whether the passed token is valid for

the respective asset. The decorator thus passes an overview

of the asset to each function call per endpoint that needs

to be protected. This approach allows for holistically secure

resources on the network that do not rely solely on the

assumption of a secure PEP, but must themselves be securely

implemented.

III. EVALUATION

A. Scenario

Our scenario describes the establishment of a novel ZTA in

the area of Edge-Cloud computing. For this we use a specially

2https://git-scm.com/docs/git-verify-commit (Last access June 2023)



designed Edge-AI board that combines a microcontroller with

a Raspberry Pi. The Raspberry Pi takes over more computa-

tionally intensive tasks here and supports the microcontroller.

In our experiments we have simulated this setup. In general,

the board is currently under continuous development and a

paper will be published in the near future. The selected service

(cloud) should monitor ventilation events and will be used

in the future to combine local machine learning (Edge) with

distributed learning (via the cloud through different rooms).

The tasks of the individual components will now be briefly

summarized:

Raspberry Pi:

• Authenticate in the Zero Trust Architecture.

• Train local (Edge) ML models for microcontroller.

• Flash microcontroller with newest software.

• Perform model updates from the cloud if necessary (if

different rooms have better ventilation models).

• Enter low-power state and instruct microcontroller to take

over operation.

Microcontroller:

• Run ML model and recognize ventilation events.

• Send ventilation data to cloud service.

• Wake Raspberry Pi if necessary (model update, re-

authentication required)

B. Implementation

The source code is freely available in [20] and [12]. The

simulation contains the following components which are ex-

plained in more detail below:

• Patti: Repository of the Patti library to create Cypher

Social Contracts [13] without running Fides [14] .

• OZY-Sim: Simulator that mimics our custom Edge-AI

board.

• Ventilation: Example services that acts as a resource in

our ZTA.

• Policy: Policy repository that also contains the policy

administration scripts.

C. Authentication with Cypher Social Contracts

The entire authentication process is shown in Fig. 3 and is

performed by the Raspberry Pi. In accordance the following

steps are carried out:

• Create a Cypher Social Contract [13] using the Template

of the resource. Here, Patti is used to create and sign

a transaction, which is then sent to the resource via the

auth API endpoint.

• Since our device is allowed to access the resource ac-

cording to the policy, the resource responds with two

transactions: the acceptance of the contract and the confir-

mation of the contract task, which contains the encrypted

authentication token, which is later used in the API calls

of the microcontroller. The two transactions are applied to

the local contract using Patti, which checks the signature

of the resource.

Fig. 3. Process of authentication to a resource. Assets obtain the hash of the
Template via the global policy to create a contract for authentication. If the
resource itself successfully verifies that the asset has access to the resource,
the resource accepts the contract and sends an updated token to the asset.

If authentication is successful, the Raspberry Pi transmits

the authentication token to the microcontroller and enters a

low-power state.

D. Regular operation

After the Raspberry Pi has switched to the low-power state,

the microcontroller takes over the regular operation of the

device and sends the measured events to the resource. Within

our simulation we use placeholders, which are transmitted

at regular intervals via the endpoint upload. Each call to a

resource is secured by HTTPS and contains the following

HTTP headers:

• X-AUTH-TOKEN: The authentication token, which was

communicated to the Raspberry Pi via the Cypher Social

Contract [13].

• X-DEVICE: The ID of the asset according to the policy

(here ozy-1).

For testing purposes, our resource only issues authentication

tokens that have a validity of 10 seconds. Accordingly, the

microcontroller checks the response of the resource to the

transmission of the event. If the resource tells the device that

it needs to re-authenticate, the Raspberry Pi is switched on

and instructed to create a new Cypher Social Contract [13].

E. Policy updates

In order to validate our system locally and not necessarily

embed it with various git operators, there is an endpoint for

testing a policy update, which is called locally. When such



a POST request is made to the endpoint policy update, the

previously described steps for updating the policy from a

resource perspective are performed. Furthermore, the sample

policy repository contains a script for administration. After

the policy file is modified locally, the following operations are

initiated on behalf of the policy administrator:

• Load KEd25519.

• Calculate the SHA256 hash of the policy file.

• Create the signature in the format that can be validated

using the Fides [14] command line interface.

• Add the changes to the repository of the policy.

• Commit the changes and sign the commit using KGPG.

If the system is to be migrated to a production scenario,

the route used, which is then called by the git providers via

webhooks, should also be secured by an API key. This key

can be stored accordingly with the git providers so that other

parties cannot call the route and only valid requests (after the

policy has been updated) trigger an update of the local policy.

IV. CONCLUSION AND FUTURE WORK

In summary, our paper presented a novel approach to ZTA

that combines secure cyber-physical contracts, decentralized

enforcement of a Zero Trust policy, and the use of highly

reliable git operators. Initially, we explain our approach in

conceptual terms and how it differs from the state of the art

in research. We also outline a simulation, which we have made

open source, that has translated our approach into practice. In

the future, we plan to further refine the approach and apply it

to the Edge-AI board to implement a real-world use case in

an Edge-Cloud continuum.
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